東洋アークのよもやま話~11~

東洋アークのよもやま話~11~

皆さんこんにちは!
株式会社東洋アーク、更新担当の中西です。

 

溶接は冶金学的結合。母材と溶加材が溶融・混合し、凝固する過程でミクロ組織が決まります。強度・靭性・耐食は熱履歴の設計で左右される。ここではアークの物理、入熱、HAZ、割れのメカニズムを“現場で使える式と指標”で整理します。

 

1|アークの正体と安定化
• 本質:気体放電による高温プラズマ。
• 制御因子:電流、電圧、極性、ガス、突出長、電極・ワイヤ径。
• 移行モード(GMAW):短絡・グロブラー・スプレー・パルス。パルスはスパッタ低減と低入熱を両立。⚡

 

2|入熱(Heat Input)の考え方
概算式:HI ≈ (V × I × 60) / (1000 × 速度mm/min) [kJ/mm]。
HI↑で溶け込み↑・歪み↑、HAZ粗粒化↑。母材・板厚・姿勢で最適点が異なる。

 

3|熱影響部(HAZ)の変態
• 粗粒域HAZ:高温長時間で粒粗大化→靭性低下。
• 細粒域HAZ/合金炭化物の析出:温度域と滞留で性質が変化。
• ステンレス鋭敏化:600–800℃域滞留でCr炭化物析出→粒界腐食。低炭材・低入熱・短時間が鍵。

 

4|冷却速度と硬さ
冷却が速いほど硬化(マルテンサイト化)し、水素割れ感受性↑。予熱とパス間温度管理で冷却曲線を緩和。温度チョークや熱クレヨンで実測管理。️

 

5|炭素当量(CE)と予熱
一般式(例):CE = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15。
CE↑→硬化↑→予熱↑。板厚・拘束が大きいほど予熱が必要。

 

6|水素割れの四要素(H-M-S-R)
水素(Hydrogen)・金属組織(Metallurgy)・応力(Stress)・拘束(Restraint)。対策は低水素材・乾燥・予熱・後熱・溶接順序。

 

7|希釈・濡れ・融合
• 希釈:溶融池での母材比率。過剰希釈は強度低下、低すぎると融合不良。
• 濡れ:ビードが開先壁にどれだけ“張り付くか”。
• 融合:金属学的連続性。角度・速度・入熱で決まる。

 

8|歪みの理屈(収縮)
溶融→凝固で線収縮。対称・跳び・逆ひずみ・治具拘束で制御。ミクロの収縮の集合がマクロの変形。

 

9|現場計算の例
例:t=20mm,X開先60°,ルート面2mm,長さ500mm。開先体積をU/J化で30%削減→入熱と歪みを同時に低減。a寸の適正化でさらに溶着量↓。

 

10|小実験メニュー(技能育成)
1) 同条件でビードを引く→切断→研磨→腐食(エッチング)→断面観察。
2) 電流を10%刻みで変化→入熱と溶け込み・余盛の相関を記録。
3) 風速1〜4m/sでガス流量を調整→外観と気孔率を比較。

 

11|まとめ
冶金は“難しい学問”ではなく欠陥ゼロの道具。入熱・冷却・清浄・姿勢の4点を定量化すれば、安定再現の第一歩が踏み出せます。次回はSMAWを深掘りします。✨